domingo, 23 de mayo de 2010

Modelo de la Mecánica Cuantica

En física, la mecánica cuántica (conocida originalmente como mecánica ondulatoria) es una de las ramas principales de la física, y uno de los más grandes avances del siglo veinte para el conocimiento humano , que explica el comporta miento de la materia y de la energía. Su aplicación ha hecho posible el descubrimiento y desarrollo de muchas tecnologías, como por ejemplo los transistores que se usan más que nada en la computación. La mecánica cuántica describe como el electrón, y por lo tanto todo el universo, existe en una diversa y variada multiplicidad de estados los cuales, habiendo sido organizados matemática mente por los físicos, son denominados auto estados de vector y valor propio, lo que en el idioma ingles se denomina con el término "Eigenstates". De esta forma la mecánica cuántica explica y revela la existencia del átomo y los misterios de la estructura atómica; lo que por otra parte, la física clásica, y más propiamente todavía la mecánica clásica, no podía explicar debidamente.
De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la
relatividad en su formalismo, tan sólo como añadido mediante teoría de perturbaciones. La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromo dinámica cuántica y teoría electro débil dentro del modelo estándar) y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuantificar ha sido la interacción gravitatoria.

Introducción

La mecánica cuántica es la última de las grandes ramas de la física. Comienza a principios del siglo XX, en el momento en que dos de las teorías que intentaban explicar lo que nos rodea, la ley de gravitación universal y la teoría electromagnética clásica, se volvían insuficientes para explicar ciertos fenómenos. La teoría electromagnética generaba un problema cuando intentaba explicar la emisión de radiación de cualquier objeto en equilibrio, llamada radiación térmica, que es la que proviene de la vibración microscópica de las partículas que lo componen. Pues bien, usando las ecuaciones de la electrodinámica clásica, la energía que emitía esta radiación térmica daba infinito si se suman todas las frecuencias que emitía el objeto, con ilógico resultado para los físicos.
Es en el seno de la
mecánica estadística donde nacen las ideas cuánticas en 1900. Al físico Max Planck se le ocurrió un truco matemático: que si en el proceso aritmético se sustituía la integral de esas frecuencias por una suma no continua se dejaba de obtener un infinito como resultado, con lo que eliminaba el problema y, además, el resultado obtenido concordaba con lo que después era medido. Fue Max Planck quien entonces enunció la hipótesis de que la radiación electromagnética es absorbida y emitida por la materia en forma de cuantos de luz o fotones de energía mediante una constante estadística, que se denominó constante de Planck. Su historia es inherente al siglo XX, ya que la primera formulación cuántica de un fenómeno fue dada a conocer el 14 de diciembre de 1900 en una sesión de la Sociedad Física de la Academia de Ciencias de Berlín por el científico alemán Máx Planck
La idea de Planck hubiera quedado muchos años sólo como hipótesis si
Albert Einstein no la hubiera retomado, proponiendo que la luz, en ciertas circunstancias, se comporta como partículas de energía independientes (los cuantos de luz o fotones). Fue Albert Einstein quién completó en 1905 las correspondientes leyes de movimiento con lo que se conoce como teoría especial de la relatividad, demostrando que el electromagnetismo era una teoría esencialmente no mecánica. Culminaba así lo que se ha dado en llamar física clásica, es decir, la física no-cuántica. Usó este punto de vista llamado por él “heurístico”, para desarrollar su teoría del efecto fotoeléctrico, publicando esta hipótesis en 1905, lo que le valió el Premio Nobel de 1921. Esta hipótesis fue aplicada también para proponer una teoría sobre el calor específico, es decir, la que resuelve cuál es la cantidad de calor necesaria para aumentar en una unidad la temperatura de la unidad de masa de un cuerpo.
El siguiente paso importante se dio hacia
1925, cuando Louis de Broglie propuso que cada partícula material tiene una longitud de onda asociada, inversamente proporcional a su masa, (a la que llamó momentum), y dada por su velocidad. Poco tiempo después Erwin Schrödinger formuló una ecuación de movimiento para las "ondas de materia", cuya existencia había propuesto de Broglie y varios experimentos sugerían eran reales.
La mecánica cuántica introduce una serie de hechos contra intuitivos que no aparecían en los paradigmas físicos anteriores; con ella se descubre que el mundo atómico no se comporta como esperaríamos. Los conceptos de
incertidumbre, indeterminación o cuantización son introducidos por primera vez aquí. Además la mecánica cuántica es la teoría científica que ha proporcionado las predicciones experimentales más exactas hasta el momento, a pesar de estar sujeta a las probabilidades.

Castañeda Malagon Oscar Isaac -10601- -Mecánica-

No hay comentarios:

Publicar un comentario